ON THE B1EBERBACH CONJECTURE FOR FUNC-TIONS WITH A SMALL SECOND COEFFICIENT

BY

DOV AHARONOV

ABSTRACT

In the following we prove that for a given univalent function such that $|a_2|$ < 1.05, $|a_n|$ < *n* for each *n*. This is an improvement of the result in [1].

1. Introduction

Let S denote the class of all normalized univalent functions in the unit disc U. If $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in S$ then $|a_2| \leq 2$. The Bieberbach conjecture states that $|a_n| \leq n$ for every natural n. This conjecture is already known to be true for $n \leq 6$. Many partial results are known in general. For instance it is known that *if* $f \in S$ then $|a_n| \leq n$ provided $n > n_0(f)$ [5]. Als o if $f \in S$ then $|a_n| < 1.081n[3]$ If $|a_2|$ is close enough to 2 the conjecture is known to be true [4]. On the other hand the conjecture is known to be true if $|a_2|$ is far from 2; more precisely, if $|a_2| < 0.867$ then $|a_n| < n$ [1]. It is the aim of this paper to improve the mentioned constant to 1.05.

2. Estimate for $|a_n|$ if $|a_2|$ is small

Let $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in S$. Denote

(2.1)
$$
\log \frac{f(z)}{z} = 2 \sum_{k=1}^{\infty} \gamma_k z^k.
$$

We have

THEOREM A [1]. *If* $f(z) \in S$ then $\sum_{k=1}^{n} k | \gamma_k |^2 < \sum_{k=1}^{n} 1/k + (|\gamma_1|^2 - \frac{1}{2} + \delta)$ *where* δ < 0.312 *is the Milin constant* [6].

Received January, 4, 1973

Let $\{A_k\}_{k=1}^{\infty}$ be an arbitrary sequence of complex numbers. Let $\{D_k\}_{k=0}^{\infty}$ be defined by $\exp\left(\sum_{k=1}^{\infty} A_k z^k\right) = \sum_{n=0}^{\infty} D_k z^k$. Then we have

THEOREM B [2], [7]. *The sequence* ${P_n}_{n=1}^{\infty}$ *defined by*

(i)
$$
P_n = \left(\frac{1}{n} \sum_{k=0}^{n-1} |D_k|^2\right) \exp\left[-\left(\sum_{k=1}^{n} k |A_k|^2 - \sum_{k=1}^{n} \frac{1}{k} + 1 - \frac{1}{n} \sum_{k=1}^{n} k^2 |A_k|^2\right)\right]
$$

satisfies $1 = P_1 \geq P_2 \geq \cdots \geq P_n \geq \cdots$. Also

(ii)
$$
|D_n|^2 \le P_l \exp\left(\sum_{k=1}^n k |A_k|^2 - \sum_{k=1}^n \frac{1}{k}\right), \qquad 1 \le l \le n.
$$

Let $\sqrt{f(z^2)} = f_2(z) = \sum_{k=0}^{\infty} c_k z^{2k+1}$. We have $\log(f_2(z)/z) = \log \sqrt{f(z^2)/z^2}$ $=\sum_{k=1}^{\infty} \gamma_k z^{2k}$.

Thus
$$
f_2(z)/z = \mathcal{L}_{k=0}^{\infty} c_k z^{2k} = \exp(\sum_{k=1}^{\infty} \gamma_k z^{2k})
$$
 or

(2.2)
$$
\exp\left(\sum_{k=1}^{\infty} \gamma_k z^k\right) = \sum_{k=0}^{\infty} c_k z^k.
$$

Using Theorem B (ii) for $l = 2$ we have from (2.2)

$$
(2.3) |c_n|^2 \leq \frac{1}{2} (1 + |c_1|^2) \exp \bigg[- \bigg(\frac{|\gamma_1|^2 - 1}{2} \bigg) \bigg] \exp \bigg(\sum_{k=1}^n k |\gamma_k|^2 - \sum_{k=1}^n 1/k \bigg).
$$

But $c_1 = \gamma_1$. Thus we get from Theorem A and (2.3)

$$
(2.4) \qquad |c_n|^2 \leq \frac{1}{2} \frac{1+|\gamma_1|^2}{\exp\left[\frac{1}{2}(|\gamma_1|^2-1)\right]} \exp(|\gamma_1|^2-\frac{1}{2}+\delta), \qquad \delta < 0.312.
$$

We now have

THEOREM. *If* $|a_2| < 1.05$ *then* $|c_n| < 1$ *and* $|a_n| < n$ *for* $n \ge 2$.

PROOF. $a_2/2 = \gamma_1$ and so $|\gamma_1| < 0.525$ implies with (2.4) and some elementary calculation that $|c_n| < 1$. But $f(z^2) = [f_2(z)]^2$ and so

(2.5)
$$
a_n = \sum_{k=0}^{n-1} c_k c_{n-1-k}
$$

or by the Schwarz inequality

$$
(2.6) \t\t |a_n| \leq \sum_{k=0}^{n-1} |c_k|^2.
$$

Thus $|c_n| < 1$ implies $|a_n| < n$.

REMARKS

1) We substituted $l = 2$ in (ii). Since P_l is monotone decreasing it is clear that for $l \geq 3$ one must get better results, although the calculation may be more **complicated.**

2) Any improvement of the Milin constant δ will give an improvement of the **above estimate.**

3) It is worth noting that the remarkable proof of the Bieberbach conjecture for $n = 5$ in [8] has some connection to our work in the following sense. The **authors first prove that if** $|a_2|$ **is close to 2 then** $|a_5| < 5$ **. Then they extend the result globally to the whole range** $|a_2| \le 2$ **.**

REFERENCES

1. D. Aharonov, *Proof of the Bieberbach conjecture for a certain class of univalent functions,* Israel J. Math. 8 1970, 103-104.

2. D. Aharonov, Lecture notes, University of Maryland, 1971.

3. C.H. Fitzgerald, *Quadratic inequalities and coefficient estimates for Schlicht functions,* Arch. Ration. Mech. Anal. 46 (1972), 356-368.

4. P.R. Garabedian and M. Schiffer, *The local maximum theorem for the coefficients of univalent functions,* Arch. Ration. Mech. Anal. 26 (1967), 1-32.

5. W. K. Hayman, *Multivalent Functions,* Cambridge University Press, 1958.

6. I.M. Milin, *On the coefficients of univalent functions,* Dokl. Akad. Nauk SSSK 176 (1967), 1015-1018 (Soviet Math. Dokl. 8 (1967), 1255-1258).

7. I. M. Milin, *Univalent Functions and Orthonormal Systems,* Moscow, Nauka, 1971.

8. R. Pederson and M. Schiffer, *A proof of the Bieberbach conjecture for the fifth coefficient,* Arch. Ration. Mech. Anal. 45 (1972), 161-193.

DEPARTMENT OF MATHEMATICS

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY HAIFA, ISRAEL